首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   180篇
  国内免费   3篇
化学   11篇
晶体学   7篇
力学   1篇
物理学   254篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   15篇
  2016年   20篇
  2015年   11篇
  2014年   25篇
  2013年   23篇
  2012年   31篇
  2011年   24篇
  2010年   21篇
  2009年   20篇
  2008年   12篇
  2007年   11篇
  2006年   14篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2000年   2篇
排序方式: 共有273条查询结果,搜索用时 22 毫秒
1.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   
2.
Because of their large band-gap, large high-field electron velocity, large breakdownfield, and large thermal conductivity, GaN and its heterojunction with AlGaN and InGaNhave foreseeable potential in the applications of high-power/temperature electronics, andoptoelectronic devices operative in UV and visible wavelength. Polarization inducedelectric field can reach the magnitude of ~MV/cm[1,2]. For AlGaN/GaN based FETs theconcentration of sheet carrier induced by polarization in the cha…  相似文献   
3.
为了研究AlGaN量子阱层和垒层中Al组分不同对AlGaN基深紫外发光二极管(LED)光电性能的影响,本文利用MOCVD生长、光刻和干法刻蚀工艺制备了AlGaN量子阱层和垒层具有不同Al组分的270/290/330nm深紫外LED,通过实验和数值模拟计算方法发现,量子阱层和垒层中具有低Al组分紫外LED的AlGaN材料具有较低的位错密度、较高的光输出功率和外量子效率。通过电流-电压(I-V)曲线拟合出的较大的理想因子(3.5)和能带结构图表明,AlGaN深紫外LED的电流产生是隧穿机制占据主导作用,这是因为高Al组分AlGaN量子阱中强极化场造成了有源层区域较大的能带弯曲和电势降。  相似文献   
4.
In this paper,we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor(MISFET).An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET features a selfprotected function for a reverse bias.This diode takes advantage of the recessed-barrier enhancement-mode technique to realize an ultra-low voltage drop and a low turn-ON voltage.In the smart monolithic integration,this integrated diode can block a reverse bias(> 70 V/μm) and suppress the leakage current(< 5 × 10-11 A/mm).Compared with conventional monolithic integration,the numerical results show that the MISFET integrated with a field-controlled diode leads to a good performance for smart power integration.And the power loss is lower than 50% in conduction without forward current degeneration.  相似文献   
5.
Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor(MOS) structures. Two types of device structures, namely, the recessed gate structure(RGS) and the normal gate structure(NGS), are studied in the experiment. Interface trap parameters including trap density Dit, trap time constant τit, and trap state energy ETin both devices have been determined. Furthermore,the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching(RIE).  相似文献   
6.
Achieving high levels of n‐type conductivity in AlN and high Al‐content nitride alloys is a long standing problem; significant decreases in conductivity are observed as the Al content is increased, a phenomenon that has been attributed to donors such as oxygen or silicon forming DX centers. We address this problem through a comprehensive first‐principles hybrid density functional study of potential n‐type dopants, identifying SN and SeN as two elements which are potential shallow donors because they do not undergo a DX transition. In particular, SN is highly promising as an n‐type dopant because it also has a low formation energy and hence a high solubility. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
7.
Biosensors based on field‐effect transistor (FET) structures have attracted considerable attention because they offer rapid, inexpensive parallel sensing and ultrasensitive label‐free detection. However, long‐term repeatable detection cannot be performed, and Ag/AgCl reference electrode design is complicated, which has hindered FET biosensors from becoming truly wearable health‐monitoring platforms. In this paper, we propose a novel wearable detection platform based on AlGaN/GaN high‐electron‐mobility transistors (HEMTs). In this platform, a sweatband was used to continuously collect sweat, and a pH detecting unit and a potassium ion detecting unit were formed by modifying different sensitive films to realize the long‐term stable and repeatable detection of pH and potassium ions. Experimental data show that the wearable detection platform based on AlGaN/GaN HEMTs has good sensitivity (pH 3–7 sensitivity is 45.72 μA/pH; pH 7.4–9 sensitivity is 51.073 μA/pH; and K+ sensitivity is 4.94 μA/lgαK+), stability (28 days) and repeatability (the relative standard deviation (RSD) of pH 3–7 sensitivity is 2.6 %, the RSD of pH 7.4–9 sensitivity is 2.1 %, and the RSD of K+ sensitivity is 7.3 %). Our newly proposed wearable platform has excellent potential for predictive analytics and personalized medical treatment.  相似文献   
8.
We studied influence of rapid thermal annealing on electrical parameters of SF6 plasma treated AlGaN/GaN heterostructures. The main emphasis by the evaluation was laid on C-V measurement and simulation, but also I-V and SIMS measurement were used. It was found that the diminished sheet carrier concentration of a two-dimensional electron gas after plasma treatment recovered significantly at the temperature of 500 °C. By using C-V measurement, it was possible to assess besides the changes of the two-dimensional electron gas concentration after annealing also the changes in the Schottky barrier heights and to find out the doping concentration in AlGaN barrier and GaN channel layer. The trend in Schottky barrier height changes after annealing was confirmed also by I-V measurement.  相似文献   
9.
This paper studies systematically the drain current collapse in AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) by applying pulsed stress to the device. Low-temperature layer of Al2O3 ultrathin film used as both gate dielectric and surface passivation layer was deposited by atomic layer deposition (ALD). For HEMT, gate turn-on pulses induced large current collapse. However, for MOS-HEMT, no significant current collapse was found in the gate turn-on pulsing mode with different pulse widths, indicating the good passivation effect of ALD Al2O3. A small increase in Id in the drain pulsing mode is due to the relieving of self-heating effect. The comparison of synchronously dynamic pulsed Id - Vds characteristics of HEMT and MOS-HEMT further demonstrated the good passivation effect of ALD Al2O3.  相似文献   
10.
We report results from optical spectroscopy such as photoluminescence (PL) and time resolved photo-luminescence (TRPL) techniques from different well width MOCVD grown GaN/Al0.07Ga0.93N MQW samples. There is evidence of localization at low temperature in all samples. The decay time of all samples becomes non-exponential when the detection energy is increased with respect to the peak of the emission. Localization of carriers (excitons) is demonstrated by the “S-shape” dependences of the PL peak energies on the temperature. The time-resolved PL spectra of the 3-nm well multi quantum wells reveal that the spectral peak position shifts toward lower energies as the decay time increases and becomes red-shifted at longer decay times. There is a gradient in the PL decay time across the emission peak profile, so that the PL process at low temperatures is a free electron-localized hole transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号